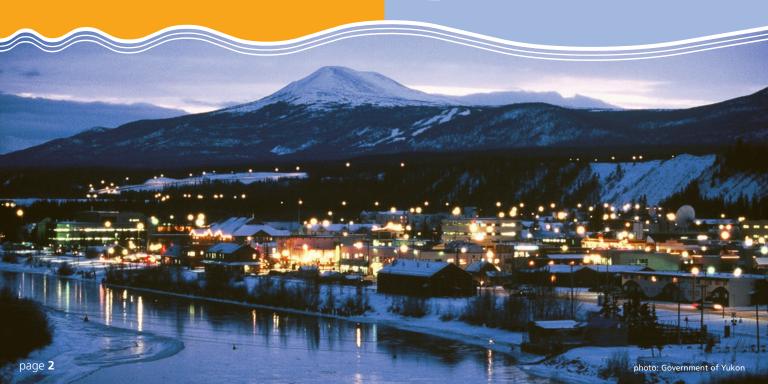


How is electricity made?

It's hard to imagine our homes without electricity. There would be no TV, computer or video games. You'd have to do your homework by candlelight or oil lamps. You wouldn't be able to stream your favourite artists or scroll their TikToks. You'd have to entertain yourself!

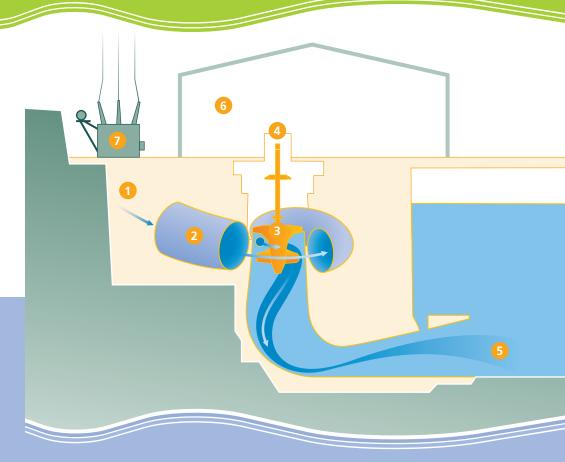

- O proton
- newtronelectron
- electron orbit

What is electricity?

Electricity is a form of energy that starts with atoms. You can't see atoms because they're too small, but they make up everything around us. There are three parts to an atom: protons, neutrons and electrons. Electricity is created when electrons move from atom to atom. There are a number of ways to make electrons move, but most electricity is produced at power plants.

action going on in a atom!

How do power plants work?

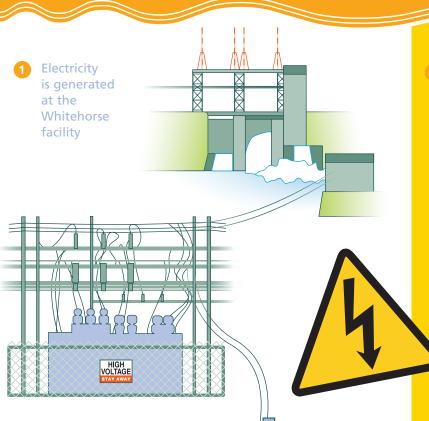

It all starts with a source of power. At Yukon Energy, we use water to create most of our electricity. That's why most of our plants are called hydroelectric facilities: hydro means water. Power plants that use water to make electricity are built near rivers. Our Whitehorse plant, for instance, is on the Yukon River.

- 1 river water flows into a large tunnel called the penstock
- 2 penstock
- turbine
- 4 generator
- 5 water flows back into the Yukon River
- 6 Yukon Energy building
- 7 transformer

Dams are built across rivers to hold back the water. The water is then directed through big pipes (penstock) and falls against the blades of giant turbines.

The turbine blades turn when the water hits them, just like the blades of a pinwheel turn when you blow

Once the water hits the blades, it returns to the river.



The turbine blades are attached to a big metal rod that has large magnets attached to it. When the blades turn, the rod and magnets spin very fast. The magnets are surrounded by heavy coils of copper wire, and as they spin, electrons in the wire begin to move, creating electricity.

power transformer. The transformer boosts the electrical voltage (the strength or force at which electricity flows) to help it move through wires called transmission lines. Those wires are attached to wooden or metal poles that you see along roads and throughout communities.

All the wires are made of metal – usually aluminum or copper. That's because metal is a good conductor – electricity travels through it easily. Water is also a good conductor, and because our bodies are mostly made of water, electricity can travel through us

easily. That's not something we want to happen though, because if we have electricity going through us we'll likely be seriously hurt or even killed. That's why adults warn you to stay away from high voltage sites and to keep your fingers away from wall plugs

2 Electricity travels at the speed of light – about 300,000 kilometres per second. Sometimes, when electricity has to travel a long way, it gets a little weaker as it moves along the lines. It needs a boost, like you need food to replace the energy you've burned after playing outside all day. That's where substations help. Substations are large, box-like power transformers that sit in fenced-in areas. You'll see signs on the fences that say 'High Voltage – Stay Away'. It's important that you obey those signs (remember what you learned about electricity being able to travel easily through your body).

When wires reach your house, another transformer on a power pole makes the electricity just the right voltage so you can use it safely.

4) The wire is connected to a meter box that keeps track of how much electricity is being used. There are wired in your house connected to outlets. These outlets let you plug in your TV, charge your phone, or anything else electrical. What an amazing journey electricity takes to get to your home!

communications@yec.yk.ca

The Whitehorse Dam and How it Works

The Whitehorse Dam (officially known as the Whitehorse Rapids Generating Facility) is an interesting place to visit. If you want to come for a tour and learn more about how Yukon Energy makes power, please ask your teacher to email us beforehand and we will arrange a time that works best for both you and our employees.

If you study the you come, it will help you understand how the different together to make electricity.

A Tour of the Whitehorse Dam

- 1 Hydro turbine #4, known as the 'Fourth Wheel'
- 2 Spillway water not needed to produce electricity is spilled into the Yukon River
- 3 Dam
- 4 Fishladder allows migrating salmon and other species of fish to travel past the dam
- 5 Fish weir directs fish towards the fishladder

- 6 Fish screens also help direct fish towards the fishladder
- 7 Hydro turbines #1, 2 and 3
- 8 Switching station sends electricity to various communities
- 9 Seven back-up diesel generators
- 10 Diesel storage tank

- 11 Substation—gives electricity a voltage boost to help it travel along power lines
- 12 Yukon Energy's corporate office
- 13 Power Canal moves water from Schwatka Lake towards the intake to hydro units #1, 2 and 3
- Gate House—controls the flow of water to the penstock

At top speed, water fill a

At top speed, water canada

from this spillway the Canada

from this size of the whitehorse

from the size of the whitehorse

space the size of minutes!

space the Centre 3.3 minutes!

within 3.3 minutes!

Dam

dam (number 3). It's a large steel, earthen and concrete structure that holds back water from Schwatka Lake. In the summer and fall, when we sometimes have more water than we need to make electricity, we spill some of the lake water through our **spillway** (number 2).

Power Canal

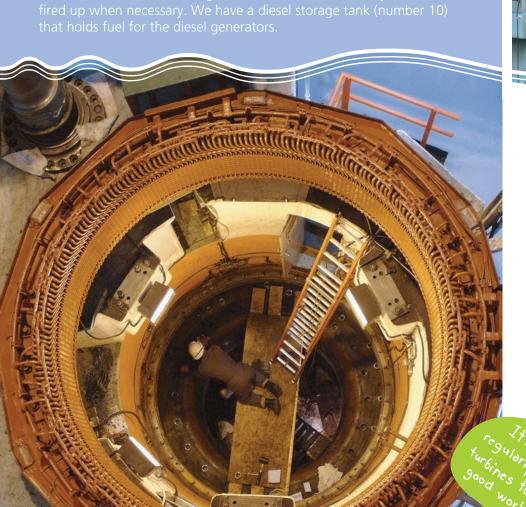
Our facility is built in such a way that some of the water from Schwatka Lake moves into a long and narrow area called a **power canal** (number 13). There are **trash gates** in the canal to catch any

of **log booms** in the canal that calm the water and help prevent erosion of the canal banks.

Hydro Turbines/Generators

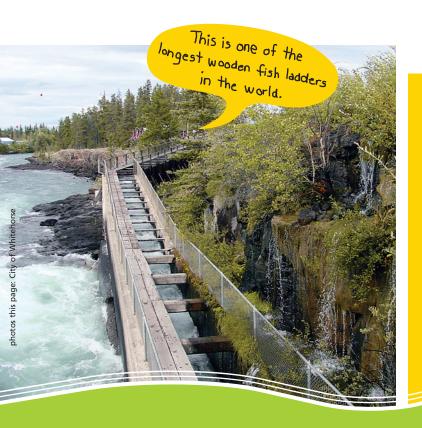
of our **hydro turbines**, making the blades

The turbine blades are attached to


Gate House

The small building at the end of the power canal is called the gate house (number 14). When doing maintenance or repairs to our generating equipment, gates from this structure are lowered to stop the water from flowing from the canal through large tunnels (known as the **penstock**) to our turbines.

You need training to work tions special training to work to work


Diesel Generators

We use water to produce most of our electricity. In fact, on average over 90% of the electricity we generate comes from renewable sources. We use diesel, along with LNG, to make sure Yukoners have reliable electricity service during winter peaks, emergencies and when renewable resources aren't available. Because of this, it's important that we maintain our diesel generators (number 9) so they can be fired up when necessary. We have a diesel storage tank (number 10) that holds fuel for the diesel generators.

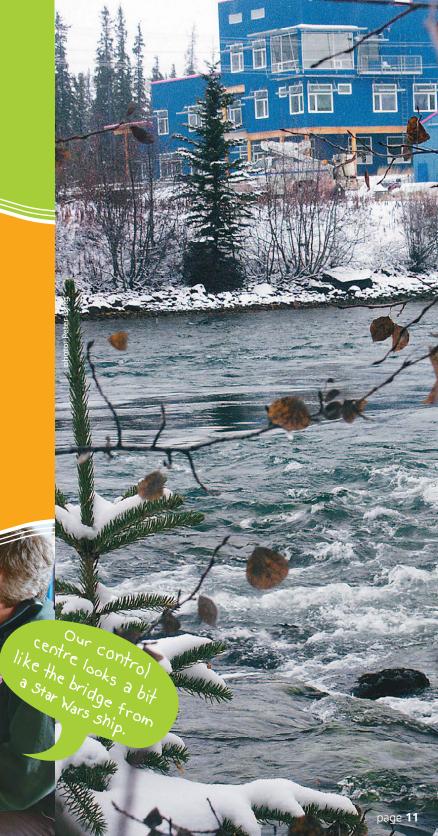
Substations and Switching Stations

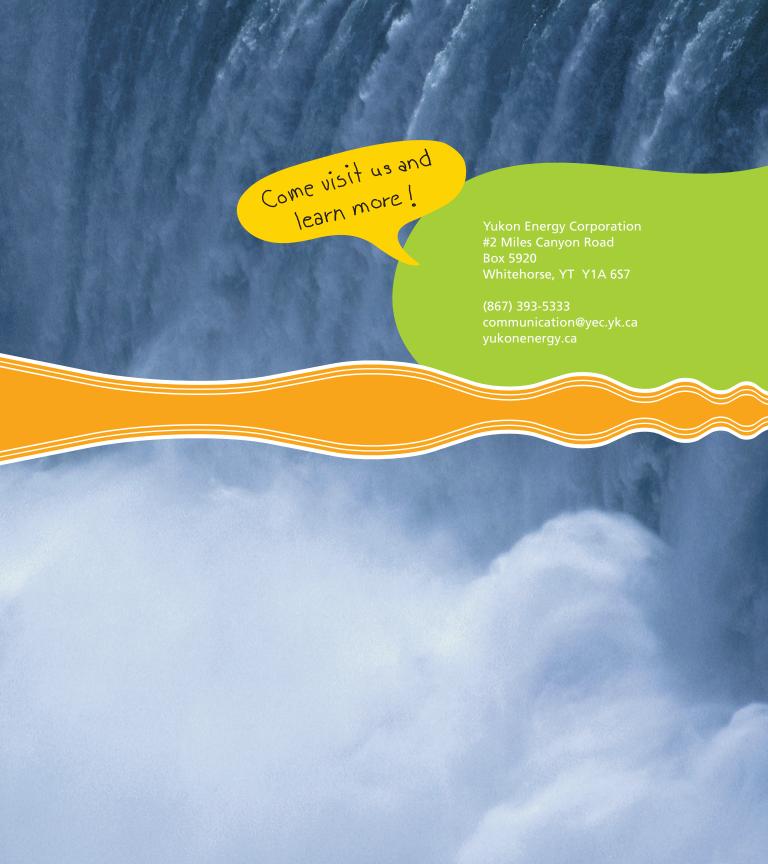
Once electricity is produced, it moves through power lines to a substation. **Substations** (number 11) give electricity a voltage boost (voltage is the strength at which electricity moves) to help it travel along power lines to Yukon communities. Across the Yukon River is a **switching station** (number 8) that sends electricity to various communities.

Fish Ladder

When the dam was built, salmon and other fish couldn't travel this part of the river as they had in the past, so special equipment was built to help them maneuver past our facility. A wooden **fish ladder** (number 4) allows the fish to move between Schwatka Lake and the part of the Yukon River below our dam. The 366-metre fish ladder is one of the longest wooden fish ladders in the world.

There's an interpretive centre at the fishway that tells the story of the migrating chinook salmon. The facility has underwater viewing windows and TV screens so you can see the fish as they swim by.


Fish Screens and Weir


Screens are put in the water in the summer to stop the fish from swimming into the water that's just run through our turbines (number 6). As well, a concrete **weir** (number 5) and an underwater canal guide the fish towards the fish ladder and away from our turbines.

Award-Winning Building

Before finishing your tour, take notice of our office building (number 12), built after our old one was destroyed in a fire in 1997. The new building has won a national design award for energy efficiency.

Along with being our Corporate
Headquarters, this building houses our
control centre, which allows operators
to control and monitor all hydro and
diesel generators throughout the
Yukon, our transmission facilities and
our sub-stations. A few key strokes
on a computer keyboard can start and
stop generators or open and close
breakers hundreds of kilometres away.

